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Abstract

A hitherto unavailable analytical solution to the boundary value problem of free vibration response of
shear–flexible cross-ply laminated doubly curved panels is presented. The laminated shell theory
formulation is based on the first-order shear deformation theory (FSDT) including rotatory and surface-
parallel inertias. The governing equations of the panel are defined by five highly coupled partial differential
equations in five unknowns — three displacements, and two rotations. The assumed solution functions for
the eigen/boundary-value problem are selected in terms of mixed-type double Fourier series. Extensive
numerical results that are presented in this study include (1) convergence characteristics of computed
natural frequencies, and (2) effects of length-to-thickness ratio, radius-to-length ratio, lamination sequence,
boundary constraint and shell geometry on the normalized natural frequencies of interest. Also numerically
investigated is the highly complex interaction among bending–stretching type coupling effect, membrane
action due to shell curvature, surface-parallel end constraints (or lack thereof), and the effects of transverse
shear deformation, rotatory inertias and surface-parallel inertias.
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1. Introduction

A variety of factors, such as high strength-to-weight and stiffness-to-weight ratios (resulting in
fuel economy), corrosion resistance, longer fatigue life and stealth characteristics (of military
aircraft, e.g., stealth fighter, F-117A Nighthawk and B-2 bomber) are responsible for increased
usage of fiber-reinforced composite laminates in aerospace and other structural applications.
Fatigue includes sonic fatigue caused by the new fuel efficient propfan or unducted fan (UDF)
engines, necessitating the all-composite empennages on the Boeing 7J7 and Douglas MD-91X.
However, the single most important factor to the commercial and military planners alike is the
design flexibility inherent in these composite laminates, known as tailoring, which is essentially
exploiting the possibility of obtaining optimum design through a combination of structural/
material concepts, stacking sequence, ply orientation, choice of the component phases, etc., to
meet specific design requirements. An outstanding example of aeroelastic tailoring is the forward
swept wing of the Grumman X-29 aircraft. All these advancements and design requirements place
a premium on an in-depth understanding of the dynamic response characteristics of such
structural components. The present study is intended to capture some of these intricacies of the
dynamic response of laminated composite structural components through analysis of a class of
model problems — a moderately thick cross-ply laminated doubly curved panel with general
admissible boundary conditions. Analysis of moderately thick panels are, in general, based on the
first-order shear deformation theory (FSDT).
Problems relating to laminated anisotropic cylindrical/doubly curved shells of finite dimensions

have attracted the attention of many investigators (see e.g., Bert and Francis [1]). Typically, these
laminated composite structures are analyzed using approximate numerical techniques, such as
finite-element methods, boundary element methods (BEM) and more recently developed meshless
Petrov-Galerkin methods, the accuracy of which is usually ascertained by comparing with certain
bench-mark analytical (or strong form of) solutions. Derivation of analytical (e.g., Fourier series)
solutions for the problems of laminated curved panels fabricated with such advanced composite
materials as graphite/epoxy, boron/epoxy, graphite/PEEK, etc., is, however, fraught with many
complexities, such as surface-parallel anisotropy, asymmetry of lamination (resulting in
bending–stretching coupling), effect of transverse shear deformation (caused by low transverse
shear modulus-to-surface-parallel Young’s modulus ratio), and curvature effect. Additional
complexities arise by way of satisfying boundary conditions, that cannot be handled by traditional
analytical approaches, such as almost two centuries-old Navier’s and close to a century-old
Levy’s, and require a special technique, such as the boundary-discontinuous double Fourier series
solution that exploits the roles of complementary and admissible boundary constraints in Fourier
solutions to boundary-value problems [2,3].
A detailed review of the literature pertaining to the subject matter of the present study is already

available in recent publications, e.g., Refs. [4–20] as well as survey papers, e.g., Refs. [21,22], and
will, therefore, not be repeated here in the interest of brevity of presentation. Noor and Burton
[21], and Qatu [22] have provided excellent surveys of publications pertaining to the vibration of
laminated composite shells covering the periods prior to and after 1989, respectively. An in-depth
review of this literature reveals that the solution to the problem of free vibration of antisymmetric
cross-ply moderately thick doubly curved panels, with general admissible boundary conditions
prescribed at the edges, is still non-existent in the literature, which is the subject matter of the
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present investigation. Additionally, the boundary discontinuous double Fourier series technique
employed so far in the analysis of cylindrical and doubly curved panels [6,9,12] is based on the
approach due to Chaudhuri [2,3]. This approach recommends that the assumed solution for a
cross-ply panel should require only a single set of Fourier series for each displacement and
rotation component. It may be noted here that although Fourier series expansion is, in theory, a
valid approach to derive the Green’s function for a boundary value problem, in practice, the
convergence is not uniform and very slow because the Green’s function has a singularity. For
example, the Green’s function for two-dimensional Laplace’s equation has a logarithmic
singularity, which obviously cannot be evaluated accurately enough by any reasonably small finite
sum in the double Fourier series [23]. Acceleration of convergence has been a major theme of
research during the last several decades, especially in the Russian literature on the subject [23].
Inclusion of a second series, which is orthogonal to the first, in the assumed solution is a novel
idea that has recently been introduced by Kabir et al. [24]. Additionally, they have computed
hitherto unavailable numerical results for an important laminated shell boundary value problem
— free vibration of an antisymmetric (01/901) cross-ply shallow cylindrical panel with the SS2
boundary condition (see, e.g., Ref. [3] for definition).
In what follows, the afore-mentioned novel idea is extended to the investigation of the relatively

deep laminated shells of general geometry subjected to different boundary conditions. The
primary objective of the present study is to (1) develop boundary-discontinuous mixed Fourier
series solutions to the afore-mentioned class of bench-mark problems and (2) provide some useful
numerical results for free vibration of cross-ply cylindrical and spherical panels. For the purpose
of illustration, the SS1 and C4 boundary conditions are selected here, in addition to the SS2
(previously used by Kabir et al. [24] for a specific example), because they provide the upper and
lower bounds for elastically supported curved panels used in helicopter rotor blades, aircraft
wings, fuselages, pressure vessels and other applications.
2. Statement of the problem

Fig. 1 shows a laminated doubly curved panel (open shell) of rectangular planform, of total
thickness h. x1 and x2 represent the directions of the lines of curvature of the middle surface, while
the x3-axis is a straight line perpendicular to the middle surface. Ri (i ¼ 1; 2) denotes the principal
radii of curvature of the middle surface. The thickness of the kth layer is denoted by hðkÞ ¼

x
ðkÞ
3 � x

ðk�1Þ
3 ; in which x

ðkÞ
3 and x

ðk�1Þ
3 ; k ¼ 1; ..., N; are the distances from the reference surface to

the outer (top) and inner (bottom) faces, respectively, of the kth lamina, with N being the total
number of layers. The following set of simplifying assumptions is considered: (1) first-order shear
deformation theory (FSDT); (2) moderate shallowness in the sense of Sanders [25]—h=R1; h/
R251—the implications of which have also been discussed by Reissner [26]; (3) transverse
inextensibility; and (4) negligibility of geodesic curvatures of the lines of curvature coordinates.
The displacement field, based on the above hypotheses, is given by

ūi ¼ ð1þ x3=RiÞui þ x3fi; i ¼ 1; 2; ū3 ¼ u3; (1)

in which ūi (i=1, 2, 3) represents the components of displacement at a point xi (i=1, 2, 3), while ui

denotes the same for the corresponding point at the mid-surface. Assumptions of shallowness (z3/
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Ri51), vanishing geodesic curvatures, transverse inextensibility and the first-order shear
deformation theory given by Eq. (1) reduce the kinematic relations of a three-dimensional
curved elastic solid given by Eq. (A.1) in Appendix A to the corresponding kinematic relations of
a doubly curved shell:

�1 ¼ �01 þ x3k1; �2 ¼ �02 þ x3k2; �4 ¼ �04; �5 ¼ �05; �6 ¼ �06 þ x3k6; (2)

where

�01 ¼ u1;1 þ
u3

R1
; �02 ¼ u2;2 þ

u3

R2
; �04 ¼ u3;2 þ f2 �

u2

R2
;

�05 ¼ u3;1 þ f1 �
u1

R1
; �06 ¼ u2;1 þ u1;2; k1 ¼ f1;1;

k2 ¼ f2;2; k6 ¼ f2;1 þ f1;2 � cðu2;1 � u1;2Þ; ð3Þ

in which f1 and f2 are the rotations at a point on the reference surface about x2 and x1 coordinate
axes, respectively, while c is given by [25]

c ¼
1

2

1

R1
�

1

R2

� �
: (4)

The equations of motion, based on the extension of Sanders’[25] shell theory to the moderately
thick shell regime, can be derived by substituting the above kinematic relations in an expression
for virtual work, the details of which are omitted in the interest of brevity of presentation. These
can be written as follows:

N1;1 þ N6;2 þ cM6;2 þ
Q1

R1
¼ C00

1; (5a)

N6;1 � cM6;1 þ N2;2 þ
Q2

R2
¼ C00

2; (5b)
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Q1;1 þ Q2;2 �
N1

R1
�

N2

R2
¼ C00

3; (5c)

M1;1 þ M6;2 � Q1 ¼ C00
4; (5d)

M6;1 þ M2;2 � Q2 ¼ C00
5; (5e)

where

C00
i ¼ P1 þ

2P2

Ri

� �
ui;tt þ P2 þ

P3

Ri

� �
fi;tt ði ¼ 1; 2Þ; C00

3 ¼ P1u3;tt; (6a)

C00
iþ3 ¼ P2 þ

P3

Ri

� �
ui;tt þ P3fi;tt ði ¼ 1; 2Þ; (6b)

in which surface-parallel and rotatory inertias are included. Pi (i=1, 2, 3) are as presented below

P1; P2; P3ð Þ ¼
XN

k¼1

Z x
ðkÞ

3

x
ðk�1Þ

3

rðkÞ 1; x3; x2
3

� �
dx3; (7)

where rðkÞ represents the density of the layer material. N1, N2, N6 are the surface-parallel stress
resultants, while M1,M2,M6 are moment resultants (stress couples), and Q1 and Q2 are the
transverse shear stress resultants, all per unit length. The stress resultants and couples (Ni,Mi,Qi)
are given as follows:

N1 ¼ A11 u1;1 þ
u3

R1

� �
þ A12 u2;2 þ

u3

R2

� �
þ B11f1;1 þ B12f2;2; (8a)

N6 ¼ A66 u2;1 þ u1;2
� �

þ B66 f2;1 þ f1;2 � c u2;1 � u1;2
� �� �

; (8b)

M1 ¼ B11 u1;1 þ
u3

R1

� �
þ B12 u2;2 þ

u3

R2

� �
þ D11f1;1 þ D12f2;2; (8c)

M6 ¼ B66 u2;1 þ u1;2
� �

þ D66 f2;1 þ f1;2 � c u2;1 � u1;2
� �� �

; (8d)

Q1 ¼ A55 u3;1 þ f1 �
u1

R1

� �
K2

1; (8e)

where Aij; Bij; and Dij (i, j=1, 2, 6) are extensional, coupling, and bending rigidities, respectively,
while Aij (i, j=4, 5) denotes transverse shear rigidities. N2, M2 and Q2 can be obtained from the
expressions for N1,M1 and Q1, respectively, by replacing subscript 1 by 2, 5 by 4, c by �c, and vice
versa. K2

1 and K2
2 are shear correction factors. Substitution of Eqs. (8) into Eqs. (5) yields the

following system of governing partial differential equations, written in the matrix operator form:

Lv ¼ f; (9)

where

Lij ¼ Lji; i; j ¼ 1; . . . ; 5; v ¼ u1; u2; u3; f1; f2

� �
; f ¼ C00

1; C00
2; C00

3; f
00
1; f

00
2

� �
: (10a2c)
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Denoting

q
qx1

¼ q1;
q2

qx2
1

¼ q21;
q
qx2

¼ q2;
q2

qx2
2

¼ q22;
q2

qx1qx2
¼ q1q2;

the elements of L can be written as follows:

L11 ¼ Gð1; 1Þ þ Gð1; 2Þq21 þ Gð1; 3Þq22; L12 ¼ Gð1; 4Þq1q2; L13 ¼ Gð1; 5Þq1;

L14 ¼ Gð1; 6Þ þ Gð1; 7Þq21 þ Gð1; 8Þq22; L15 ¼ Gð1; 9Þq1q2;

L22 ¼ Gð2; 2Þ þ Gð2; 3Þq21 þ Gð2; 4Þq22; L23 ¼ Gð2; 5Þq2; L24 ¼ Gð2; 6Þq1q2;

L25 ¼ Gð2; 7Þ þ Gð2; 8Þq21 þ Gð2; 9Þq22; L33 ¼ Gð3; 3Þ þ Gð3; 4Þq21 þ Gð3; 5Þq22;

L34 ¼ Gð3; 6Þq1; L35 ¼ Gð3; 7Þq2; L44 ¼ Gð4; 6Þ þ Gð4; 7Þq21 þ Gð4; 8Þq22;

L45 ¼ Gð4; 9Þq1q2; L55 ¼ Gð5; 7Þ þ Gð5; 8Þq21 þ Gð5; 9Þq22; ð11Þ

where the non-zero constants G(i,j), i=1,..., 5, j=1, 2, 3,..., are as defined in Eq. (B.1) of Appendix
B. The five boundary conditions at each edge are chosen to be one member from each pair of

ðu3;QnÞ ¼ ðfn;MnÞ ¼ ðft;MtÞ ¼ ðun;NnÞ ¼ ðut;NtÞ ¼ 0; (12)

where n and t denote the normal and tangential directions, respectively, to an edge. For example,
the simply supported boundary conditions at the edge, x1=0, are given as follows:

SS1 : u3ð0; x2Þ ¼ M1ð0; x2Þ ¼ f2ð0; x2Þ ¼ N1ð0; x2Þ ¼ N6ð0; x2Þ ¼ 0; (13a)

SS2 : u3ð0; x2Þ ¼ M1ð0; x2Þ ¼ f2ð0; x2Þ ¼ u1ð0; x2Þ ¼ N6ð0; x2Þ ¼ 0; (13b)

SS3 : u3ð0; x2Þ ¼ M1ð0; x2Þ ¼ f2ð0; x2Þ ¼ N1ð0; x2Þ ¼ u2ð0; x2Þ ¼ 0; (13c)

SS4 : u3ð0; x2Þ ¼ M1ð0; x2Þ ¼ f2ð0; x2Þ ¼ u1ð0; x2Þ ¼ u2ð0; x2Þ ¼ 0: (13d)

The four clamped boundary conditions C1, C2, C3 and C4 can be obtained by replacing M1 by f1

in Eqs. 13(a–d).
3. Solution to the shell boundary value problem

The assumed solution functions for the problem of a finite-dimensional asymmetrically
laminated cross-ply moderately thick shell, posed by the governing partial differential equations
given by Eqs. (9)–(11) and boundary conditions given by one of Eqs. (13) or their clamped
counterparts, are selected as shown below [24]:

ui;fi

� �
¼ T uIi ;f

I
i

� �
þ uIIi ;f

II
i

� �� �
; i ¼ 1; 2; 3 for ui and i ¼ 1; 2 for fi; (14)

where

uI1 x1; x2ð Þ;fI
1 x1;x2ð Þ

� �
¼

X1
m¼0

X1
n¼1

U I
mn;X I

mn

� �
cos amx1ð Þ sin bnx2

� �
; (15a)
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uI2 x1; x2ð Þ;fI
2 x1;x2ð Þ

� �
¼

X1
m¼1

X1
n¼0

V I
mn;Y I

mn

� �
sin amx1ð Þ cos bnx2

� �
; (15b)

uII1 x1; x2ð Þ;fII
1 x1; x2ð Þ

� �
¼

X1
m¼1

X1
n¼0

U II
mn;X

II
mn

� �
sin amx1ð Þ cos bnx2

� �
; (15c)

uII2 x1; x2ð Þ;fII
2 x1; x2ð Þ

� �
¼

X1
m¼0

X1
n¼1

V II
mn;Y

II
mn

� �
cos amx1ð Þ sin bnx2

� �
; (15d)

uI3 x1;x2ð Þ ¼
X1
m¼1

X1
n¼1

W I
mn sin amx1ð Þ sin bnx2

� �
; (15e)

uII3 x1;x2ð Þ ¼
X1
m¼0

X1
n¼0

W II
mn cos amx1ð Þ cos bnx2

� �
; (15f)

with

T ¼ eiot; am ¼ mp=a and bn ¼ np=b:

It is worthwhile to note that the first of each set of assumed solution functions in Eqs. (15) is
sufficient for solving the boundary-value problem under investigation [2,3,12]. However, it is well
known from the theory of Fourier series that the rate of convergence becomes less rapid in the
presence of discontinuities in the function or its first (normal) derivative. In order to alleviate this
difficulty, each unknown is expressed in terms of two double Fourier series in which the second set
is orthogonal to the first, and represents the error term that may arise out of the presence of
discontinuity in the function or its first derivative at the boundary. This is believed to produce
accelerated convergence of the series solution.
The above equations introduce 10mn+5m+5n+1 unknown shell (interior) Fourier

coefficients. The next operation will be comprised of differentiation of the assumed solution
functions, which is a necessary step before substitution into the governing partial differential
equations given by Eqs. (9)–(11). The procedure for differentiation of the assumed double
Fourier series solution functions for the most general type of boundary condition has been
described in detail by Chaudhuri [2,3]. The illustration of the procedure is, in the interest of
brevity of presentation, primarily, but not entirely, confined to the SS1 boundary conditions and
to obtaining the first partial derivatives of the assumed solution functions, U I

1 x1;x2ð Þ and
U II

1 x1; x2ð Þ:
3.1. SS1 boundary condition

In this case, all the first and second derivatives of U I
3 x1;x2ð Þ can be obtained by term-by-term

differentiation. However, the same is not true for the remaining functions, because some physical
conditions are violated by some of these functions and/or their derivatives at some or all the
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edges. The procedure is illustrated for the assumed solution function U I
1 x1;x2ð Þ; given by

uI1 x1; x2ð Þ ¼
X1
m¼0

X1
n¼1

U I
mn cos amx1ð Þ sin bnx2

� �
; 0px1pa; 0ox2ob; (16a)

uI1;1 x1;x2ð Þ ¼ �
X1
m¼1

X1
n¼1

U I
mnam sin amx1ð Þ sin bnx2

� �
; 0px1pa; 0ox2ob; (16b)

uI1;2 x1; x2ð Þ ¼ 1
4
a0 þ

1

2

X1
m¼1

am cos amx1ð Þ þ
1

2

X1
n¼1

bnU I
0n þ gna0 þ dnb0

	 

cos bnx2

� �

þ
X1
m¼1

X1
n¼1

bnU I
mn þ gnam þ dnbm

	 

cos amx1ð Þ cos bnx2

� �
; ð16cÞ

in which

gi; di

� �
¼

ð0; 1Þ for i odd;

ð1; 0Þ for i even:

�
(17)

The boundary Fourier coefficients am; bm; in Eqs. (16) are as defined in Eqs. (C1a,b) in Appendix
C. Derivatives of other functions (uI2; f

I
1 and fI

2) can be obtained in a manner similar to the
procedure adopted for the derivatives of uI1 as shown in the Eqs. (16). This procedure, when
applied to the other assumed functions, leads to three more pairs of boundary Fourier coefficients,
defined by Eqs. (C1): the two pairs, (cn; dn), (en; f n), for each n, being associated with uI2 and fI

1;1;
respectively along the boundaries x1 ¼ 0; a; while the remaining pair, (gm; hm), for each m, being
associated with fI

2;2 along the edges x2 ¼ 0; b:
Similarly,

uII1 x1; x2ð Þ ¼
X1
m¼1

X1
n¼0

U II
mn sin amx1ð Þ cos bnx2

� �
; 0ox1oa; 0px2pb; (18a)

uII1;1 x1;x2ð Þ ¼ 1
4
ā0 þ

X1
n¼1

1

2
ān cos bnx2

� �
þ

X1
m¼1

amU II
m0 þ

1
2

ā0gm þ b̄0dm

� �� �
cos amx1ð Þ

þ
X1
m¼1

X1
n¼1

amU II
mn þ āngm þ b̄ndm

� �
cos amx1ð Þ cos bnx2

� �
; 0px1pa; 0px2pb; ð18bÞ

uII1;2 x1; x2ð Þ ¼ �
X1
m¼1

X1
n¼1

U II
mnbn sin amx1ð Þ sin bnx2

� �
; 0ox1oa; 0px2pb: (18c)

A similar procedure applied to the other assumed functions leads to five additional pairs of
boundary Fourier coefficients (see Appendix C), the details of which will be omitted here in the
interest of brevity of presentation. The above step introduces 10m þ 10n þ 12 additional unknown
coefficients, which ask for as many equations, to be supplied by the boundary conditions to be
discussed below.
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Substitution of the assumed solution functions and their appropriate partial derivatives into
Eqs. (9)–(11) and equating the coefficients of the trigonometric functions of the resulting
equations will contribute 10mn þ 5m þ 5n þ 1 linear algebraic equations. The remaining 10m þ

10n þ 12 linear algebraic equations are supplied by the geometric and natural boundary
conditions (SS1 case), given by Eqs. (13a). For example, satisfaction of the geometric boundary
conditions f2(0, x2)=f2(a, x2)=0, and noting that the first part satisfies the geometric boundary
conditions a priori, and finally equating the coefficients of sin(bnx2) will contribute the following
2n linear algebraic equations:

X1
m¼1

bmY II
mn ¼ 0; Y II

0n þ
X1
m¼1

amY II
mn ¼ 0; (19a)

for n=1,2,....
Similarly, satisfaction of the geometric boundary conditions f1(x1,0)=f1(x1,b)=0 and

equating the coefficients of sin(amx1) will contribute the following 2m linear algebraic equations:

X1
n¼1

bnX II
mn ¼ 0; X II

m0 þ
X1
n¼1

anX II
mn ¼ 0; (19b)

for m=1,2,....
The remaining 8m þ 8n þ 12 equations are contributed by the natural boundary conditions,

i.e., rest of the boundary conditions. Finally, depending on the desired degree of accuracy, a finite
set of 10mn þ 15m þ 15n þ 13 linear algebraic equations in as many unknowns must be solved for
the SS1 case.
3.2. SS2 boundary condition

The derivatives of the assumed solutions and the 10m þ 10n þ 12 boundary Fourier coefficients
thus generated are identical to their counterparts for an antisymmetric angle-ply shell (curved
panel) due to Chaudhuri and Abu-Arja [6,9], and will not be repeated here in the interest of
brevity of presentation.
Finally, we have a system of 10mn þ 15m þ 15n þ 13 linear algebraic equations with as many

unknowns that can be routinely solved, thus providing a boundary discontinuous solutions for the
SS2 boundary condition.
3.3. Other admissible boundary conditions

The problem of free vibration of cross-ply panels with SS3 boundary condition has a closed-
form solution, while the SS4 and various clamped boundary conditions, such as C1, C2 and C3,
can be treated using the above technique (see also Ref. [2]). These will, therefore, not be discussed
further in the interest of brevity of presentation. Among the supported (non-free) boundary
conditions, C4 is, however, of interest, because it serves as a counter point to the SS1 boundary
condition in terms of surface-parallel displacement and rotational constraints, and is, therefore,
illustrated in Appendix D.
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The eigenvalues and approximate eigenvectors (i.e., beam function type mode shapes) are
evaluated by calling the commercial software IMSL [27] as a subroutine.
4. Numerical results and discussions

The following example problems, pertaining to cylindrical and spherical laminated panels of
square planform—which are special cases of doubly curved panels—will serve to illustrate the
validity of the analytical procedure presented in the preceding section. The cylindrical geometry is
obtained as a special case of its doubly curved counterpart by assuming R2/b=32(10)8. The flat
plate geometry is similarly effected by assuming R1/a=R2/b=32(10)8. Examples of symmetric/
antisymmetric cross-ply laminations are considered, because their FSDT-based analytical
solutions are not available in the literature. The present study investigates the free vibration
characteristics (eigenvalue problem) of the panels. The following material (lamina) properties are
considered for numerical computation:
material type 1—used in Figs. 2–15 and 21–24:

E1

E2
¼ 15;

G12

E2
¼

G13

E2
¼ 0:4286;

G23

E2
¼ 0:3429; n12 ¼ 0:4;

material type 2—used in Figs. 16–20:

E1

E2
¼ 25;

G12

E2
¼

G13

E2
¼ 0:5;

G23

E2
¼ 0:2; n12 ¼ 0:25;

where E1 and E2 are the surface-parallel Young’s moduli in the x1 and x2 directions, respectively,
while n12 is the surface-parallel major Poisson’s ratio. G12 denotes the surface-parallel shear
modulus, while G13 and G23 represent the transverse shear moduli in the x1�x3 and x2�x3 planes,
respectively. Shear correction factors, K2

1 and K2
2; are taken equal to 5/6. The following
Fig. 2. Convergence of normalized fundamental natural frequency of a square relatively deep (R=a ¼ 5) and

moderately thick (a=h ¼ 10) antisymmetric cross-ply (01/901) cylindrical panel with SS2 boundary condition.
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Fig. 3. Convergence of normalized second natural frequency of a square relatively deep (R=a ¼ 5) and moderately

thick (a=h ¼ 10) antisymmetric cross-ply (01/901) cylindrical panel with SS2 boundary condition.

Fig. 4. Convergence of normalized third (—) and fourth (- - -) natural frequencies of a square relatively deep (R=a ¼ 5)

and moderately thick (a=h ¼ 10) antisymmetric cross-ply (01/901) cylindrical panel with SS2 boundary condition.
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normalized natural frequencies are defined

ōi ¼ oia
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr=E2Þ

p .
h; for i ¼ 1; 2; :::; (20)
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Fig. 5. Convergence of normalized fifth natural frequency of a square relatively deep (R=a ¼ 5) and moderately thick

(a=h ¼ 10) antisymmetric cross-ply (01/901) cylindrical panel with SS2 boundary condition.

Fig. 6. Variation of normalized fundamental natural frequency of square relatively deep (R=a ¼ 5) antisymmetric

(01/901) (—) and symmetric (01/901/01) (- - -) cross-ply cylindrical panels (with SS2 boundary condition) with a=h ratio.
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where oi, i=1, 2, 3, denotes the natural frequencies in numerical orders of magnitudes. ui(j,k),
i=1, 2, 3; j=k=1, 2,..., denotes the beam function type mode shapes (j,k) corresponding to the
displacement components, ui. Before proceeding to compute the numerical results for laminated
shells, the numerical results for free vibration of cross-ply plates [28,29] have been reproduced
first, which lends some credence to the accuracy of what follows.



ARTICLE IN PRESS

Fig. 7. Variation of normalized second natural frequency of square relatively deep (R=a ¼ 5) antisymmetric (01/901)

(—) and symmetric (01/901/01) (- - -) cross-ply cylindrical panels (with SS2 boundary condition) with a=h ratio.

Fig. 8. Variation of normalized third natural frequency of square relatively deep (R=a ¼ 5) antisymmetric (01/901) (—)

and symmetric (01/901/01) (- - -) cross-ply cylindrical panels (with SS2 boundary condition) with a=h ratio.
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4.1. Example 1—symmetric/antisymmetric cross-ply cylindrical panels with C4 boundary conditions

This example is investigated first, for the purpose of comparison with Kabir and Chaudhuri
[16], who have solved the problem using a boundary-continuous-displacement based double
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Fig. 9. Variation of normalized fourth natural frequency of square relatively deep (R=a ¼ 5) antisymmetric (01/901)

(—) and symmetric (01/901/01) (- - -) cross-ply cylindrical panels (with SS2 boundary condition) with a=h ratio.

Fig. 10. Variation of normalized fifth natural frequency of square relatively deep (R=a ¼ 5) antisymmetric (01/901) (—)

and symmetric (01/901/01) (- - -) cross-ply cylindrical panels (with SS2 boundary condition) with a=h ratio.

R.A. Chaudhuri, H.R.H. Kabir / Journal of Sound and Vibration 283 (2005) 263–293276
Fourier series approach, and have presented numerical results pertaining to the variation of
lowest five numerically ordered normalized natural frequencies of square relatively deep
(R=a ¼ 5) antisymmetric (01/901) and symmetric (01/901/01) cross-ply cylindrical panels with
respect to the length-to-thickness ratio, a=h: The present results are numerically too close to those
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Fig. 11. Variation of normalized fundamental natural frequency of square relatively deep (R=a ¼ 5) antisymmetric

(901/01) (—) and symmetric (901/01/901) (- - -) cross-ply cylindrical panels (with SS1 boundary condition) with a=h ratio.

Fig. 12. Variation of normalized second natural frequency of square relatively deep (R=a ¼ 5) antisymmetric (901/01)

(—) and symmetric (901/01/901) (- - -) cross-ply cylindrical panels (with SS1 boundary condition) with a=h ratio.
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computed by Kabir and Chaudhuri [16], shown in their Figs. 17(a–e), to merit a separate
presentation. As has been stated in Ref. [16] with regard to their Figs. 17(a),(c,d), that the
normalized frequencies of symmetric cross-ply cylindrical panels are generally higher than their
antisymmetric counterparts in the entire range of a=h considered, and that the corresponding
curves have stiffer slopes, especially in the thicker shell regime. This has been attributed to the
effect of bending–stretching type coupling that characterizes an antisymmetric laminate. As can
be seen from Figs. 17(b) (of Ref. [16]), the second normalized frequency, which corresponds to the
mode shape, u3ð1; 2Þ; shows a different trend in the thicker shell regime. The other exception is the
fifth normalized frequency, shown in Fig. 17(e) (of Ref. [16]).
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Fig. 13. Variation of normalized third natural frequency of square relatively deep (R=a ¼ 5) antisymmetric (901/01) (—)

and symmetric (901/01/901) (- - -) cross-ply cylindrical panels (with SS1 boundary condition) with a=h ratio.

Fig. 14. Variation of normalized fourth natural frequency of square relatively deep (R=a ¼ 5) antisymmetric (901/01)

(—) and symmetric (901/01/901) (- - -) cross-ply cylindrical panels (with SS1 boundary condition) with a=h ratio.
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4.2. Example 2—symmetric/antisymmetric cross-ply cylindrical panels with SS2 boundary

conditions

Extensive results including those relating to convergence for moderately deep (R=a ¼ 10),
almost flat (R=a ¼ 100) and flat (R=a ¼ 1000) two-layer antisymmetric cross-ply (01/901)
cylindrical panels of square planform have recently been published by Kabir et al. [24], which
will not be repeated here. The convergence characteristics of the computed natural frequencies
have demonstrated the computational efficiency of the present approach. Comparison of the
solution with its single set of double Fourier series counterparts has clearly demonstrated the
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Fig. 15. Variation of normalized fifth natural frequency of square relatively deep (R=a ¼ 5) antisymmetric (901/01) (—)

and symmetric (901/01/901) (- - -) cross-ply cylindrical panels (with SS1 boundary condition) with a=h ratio.

Fig. 16. Variation of normalized fundamental natural frequency of square moderately thick (a=h ¼ 10) antisymmetric

(—) (901/01) and symmetric (901/01/901) (- - -) cross-ply cylindrical panels (with SS1 boundary condition) with R=a ratio.
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superiority of the mixed type double Fourier series over its rival, both in terms of rapidity and
monotonicity of convergence. Furthermore, comparison with available finite element solution has
not only established the accuracy of the latter results, but also lends confidence to the solution
computed using this approach. The present results relating to relatively deep (R=a ¼ 5) cylindrical
panels are intended to supplement the above in the interest of completeness.
Figs. 2 and 3 illustrate the convergence characteristics of the lowest two numerically ordered

natural frequencies of a moderately thick (a=h ¼ 10) and relatively deep (R=a ¼ 5) two-layer
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Fig. 17. Variation of normalized second natural frequency of square moderately thick (a=h ¼ 10) antisymmetric (901/

01) (—) and symmetric (901/01/901) (- - -) cross-ply cylindrical panels (with SS1 boundary condition) with R=a ratio.

Fig. 18. Variation of normalized third natural frequency of square moderately thick (a=h ¼ 10) antisymmetric (901/01)

(—) and symmetric (901/01/901) (- - -) cross-ply cylindrical panels (with SS1 boundary condition) with R=a ratio.
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antisymmetric cross-ply (01/901) cylindrical (R2=b ¼ 32ð10Þ8) panel of square planform. The
fundamental natural frequency corresponds to the mode shapes u3ð1; 1Þ; while the second one
corresponds to the mode shape, u3ð1; 2Þ: Rapid monotonic convergence is observed in both of
these plots (Figs. 2 and 3). Rapidity of the convergence is testified by the fact that the fundamental
and the second natural frequencies, computed using m ¼ n ¼ 4; and m ¼ n ¼ 2; respectively, are
numerically close to their ‘‘converged’’ (m ¼ n ¼ 6) counterparts. The same trend continues for
the higher frequencies, as can easily be seen from Figs. 4 and 5. The rapidity of the convergence
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Fig. 19. Variation of normalized fourth natural frequency of square moderately thick (a=h ¼ 10) antisymmetric (901/

01) (—) and symmetric (901/01/901) (- - -) cross-ply cylindrical panels (with SS1 boundary condition) with R=a ratio.

Fig. 20. Variation of normalized fifth natural frequency of square moderately thick (a=h ¼ 10) antisymmetric (901/01)

(—) and symmetric (901/01/901) (- - -) cross-ply cylindrical panels (with SS1 boundary condition) with R=a ratio.
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observed here for a relatively deep (R=a ¼ 5) antisymmetric (01/901) cross-ply cylindrical panel is
in line with what has been observed for its shallower counterparts by Kabir et al. [24].
Figs. 6–10 exhibit the variations of the lowest five normalized natural frequencies of square

relatively deep (R=a ¼ 5) antisymmetric (01/901) and symmetric (01/901/01) cross-ply cylindrical
panels with respect to the length-to-thickness ratio, a=h: It is evident from Figs. 6 and 7 that the
normalized natural frequencies of symmetric cross-ply cylindrical panels are generally lower than
their antisymmetric counterparts in the entire range of a=h considered. This is due to the fact that
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the (01/901/01) cross-ply panels have higher volume-percentages of fibers in the direction of the
cylindrical curvature, which renders them more flexible and prone to the effect of rotatory inertia
compared to their antisymmetric (01/901) counterparts. The same continues for the fourth and
fifth normalized frequencies (Figs. 9 and 10). As can be seen from Fig. 8, the third normalized
frequency, which corresponds to the mode shape u3ð2; 1Þ; shows a different trend, in the thicker
shell regime. This is due to the fact that the (01/901/01) cross-ply panels have higher volume-
percentages of fibers in the direction of the smaller wavelength, which renders them slightly less
flexible and less prone to the effect of rotatory inertia, in the thick-shell regime, compared to their
antisymmetric (01/901) counterparts.
It may be remarked in this connection that rotatory inertias (and tangential inertias) have

negligible influence on the computed frequencies of a flat plate (or beam). The rotatory inertias
influence marginally the frequencies of the first branch of the frequency spectrum, but generate
additional frequency branches, the so-called ‘‘higher frequency branches’’. This has been clearly
shown by Mindlin [30] in regards to the effect of rotatory inertias. However, the same need not be
true for a shell (or arch). For example, Turfekci [31] has recently investigated the free vibration of
a shallow circular arch with uniform cross-section by taking into account axial extension, shear
deformation and rotatory inertia effects. Each effect has been considered alone as well as the
absence of any of these effects in computing the frequency coefficients for the lowest five vibration
modes of arches with five combinations of boundary conditions, various slenderness ratios and
opening angles. It has been concluded by Turfekci [31], that ‘‘the shear deformation and rotatory
inertia effects are also very important as well as the axial extension effect, even if a slender shallow
arch is considered.’’ The present results are in agreement with this conclusion.
It may be noted that the above SS2 results differ from their rigidly clamped (C4) panel

counterparts in one important respect. This is due to the effect of bending–stretching type
coupling, especially that is related to the coupling between the surface-parallel shear and out-of-
plane twisting, that characterizes an antisymmetric laminate, and introduces an effect akin to that
of ‘‘beam-column’’ [32] in the beam function. Since the C4 boundary condition imposes, in
contrast to its SS2 counterpart, a total surface-parallel constraint, this type of coupling plays the
role of a softening agent and lowers the normalized natural frequencies of the antisymmetric (01/
901) cross-ply cylindrical panels over their symmetric (01/901/01) counterparts for the C4 case.

4.3. Example 3—symmetric/antisymmetric cross-ply cylindrical panels with SS1 boundary

conditions

This boundary condition is selected since it is the flakiest among the supported boundary
conditions, and as such best serves to illustrate the primary objective of the present investigation
in terms of exhibiting complex interaction among the bending–stretching type coupling,
transverse shear deformation, rotatory and surface-parallel inertias, membrane action due to
shell curvature (which acts as an elastic foundation [26] to the beam function), and end constraints
or lack thereof. As a consequence of these complex interactions, the solutions for the
antisymmetric cross-ply panels display seemingly the most bizarre trend, as can be seen from
Figs. 11–15, bordering on computational pathology. The greatest challenge here is to untangle
these unforeseen complexities and offer underlying physical explanations, which is attempted
below.
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Figs. 11–15 exhibit the variations of the lowest five normalized natural frequencies of square
relatively deep (R=a ¼ 5) antisymmetric (901/01) and symmetric (901/01/901) cross-ply cylindrical
panels with respect to the length-to-thickness ratio, a=h: These natural frequencies generally
correspond to the mode shapes, u3ð1; 1Þ; u3ð1; 2Þ; u3ð2; 1Þ; u1ð1; 1Þ (and/or u2ð1; 1Þ), u3ð2; 2Þ; u3ð1; 3Þ;
u3ð3; 1Þ; although mode switches within the same numerically ordered frequency can be expected,
except for the case of the fundamental frequency, with different regimes of the a=h ratio. This has
been observed earlier in the case of angle-ply panels [10,13]. It is evident from these plots that the
normalized natural frequencies of symmetric cross-ply (901/01/901) cylindrical panels are higher
than their antisymmetric (901/01) counterparts in the thinner panel range of a=h considered. This
is in contrast to the difference between their symmetric (01/901/01) and antisymmetric (01/901)
cross-ply counterparts with the SS2 boundary condition. This is due to the fact that the
antisymmetric (901/01) panels suffer from the effect of bending–stretching type coupling, which
introduces a softening effect akin to that of a ‘‘beam-column’’ [32] in the beam function. Since the
SS1 boundary condition completely relaxes, in contrast to its SS2 counterpart (which only does it
partially), any surface-parallel constraint, this type of coupling plays the role of a softening agent
and lowers the normalized natural frequencies of the antisymmetric (901/01) cross-ply cylindrical
panels with the SS1 boundary condition over their symmetric (90o/0o/90o) counterparts. This
difference notwithstanding, it is interesting to observe the general similarity of the variation of the
respective normalized fundamental frequencies with respect to a=h for the cylindrical panels with
the SS1 and SS2 boundary conditions. This is because the fundamental frequency in either case is
not significantly affected by the surface-parallel boundary constraints. Figs. 12–14 offer partial
exceptions to the afore-mentioned statement with regard to relative magnitudes of the normalized
frequencies of the (901/01) and (901/01/901) panels in the thicker shell regime.
Most interesting, the effects of shear deformation, asymmetry of lamination, length-to-

thickness ratio and shell curvature on the computed natural frequencies are quite self-evident in
these plots (Figs. 11–15) for the antisymmetric (901/01) cylindrical panels. These plots exhibit a
highly complex interaction of bending–stretching type coupling effect with those of transverse
shear deformation, rotatory inertias, surface-parallel inertias, surface-parallel end constraints (or
lack thereof), and membrane action due to shell curvature. These results show that the normalized
natural frequencies, in general, increase monotonically with the increase of length-to-thickness
ratio. It is also noteworthy that the transverse shear deformation, which is generally opposed by
the membrane action due to the shell curvature and bending–stretching coupling, dominates in the
thicker shell regime, which shows up in the form of steep rises in the ōi vs. a=h curves. For higher
frequencies, the region of this dominance extends further into relatively thinner panel regime. In
contrast, the normalized frequencies, including the fundamental one, of deep panels display an
uncharacteristic rise even in the very thin panel regime, the numerically ordered third frequency
being an exception. Unlike in the case of the shallower panels with SS2 boundary condition
investigated by Kabir et al. [24], the membrane action due to shell curvature and surface-parallel
inertias, which are, in turn, coupled with rotatory inertias, interact with the bending–stretching
coupling to produce such behavior in the thinner deep (R=a ¼ 5) panels. As regards the
numerically ordered third frequency, such interaction is seen to be absent, because this appears to
correspond to the non-degenerate mode shape, u3ð2; 1Þ; wherein the shorter wavelength is in the
cylindrically curved direction and the resulting shear deformation effect cancels those due
bending–stretching coupling, membrane action and surface-parallel inertia.
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Figs. 16–20 present the variations of the lowest five normalized natural frequencies of square
moderately thick (a=h ¼ 10) antisymmetric (901/01) and symmetric (901/01/901) cross-ply
cylindrical panels with respect to the radius-to-length ratio, R=a: Fig. 16 shows that the
normalized fundamental frequency of antisymmetric (901/01) cross-ply panels are lower than their
symmetric (901/01/901) counterparts in the deeper shell regime up to R=a ¼ 35 (approx.), which is
due to the softening effect of the bending–stretching coupling discussed above. The second
normalized frequency shows a somewhat similar trend (Fig. 17), but limited to the relatively deep
shell regime, R=ap6 (approx.) — a trend shared also by the fourth normalized frequency (Fig.
19). The third normalized frequencies of both sets of panels are identical at R=a ¼ 5 (approx.) and
beyond (Fig. 18), which is in agreement with what is shown in Fig. 13. Below R=a ¼ 5 (approx.),
the behaviors are similar to the other three normalized frequencies discussed above. The fifth
normalized frequency of the antisymmetric (901/01) panel is lower than its symmetric (901/01/901)
counterpart in the entire range of R=a (Fig. 20).
It may be noted that the above results (Figs. 16–20) actually refer to the effect of the

opening angle (a=R in radians) while keeping the aspect ratio, a=h; unaltered. These
plots clearly show three regions: (1) almost flat frequency vs. R=a curves for large R=a (shallow
shells), (2) very steep frequency vs. R=a behaviors for small R=a (very deep shells), and (3) the
transition region of moderately steep frequency vs. R=a behaviors for intermediate R=a
(moderately deep to relatively deep shells). The present results based on the extension of Sanders’
shell theory to the moderately thick shell regime will be exact in the region (3), and obviously in
the region (1), while the similar extension of Donnell’s theory will be exact for the region (1) alone.
For capturing exactly the very deep shell behavior represented by the region (2), a similar
extension of Flugge’s shell theory to the moderately thick shell regime must be deployed. The
present results provide approximate results for this region, and will thus serve as a baseline
solution for future comparisons with results computed using the afore-mentioned extension of
Flugge’s shell theory.
In view of the above discussion, it may be a worthwhile exercise to check the validity of the

extension of Sander’s shell theory to the moderately thick shell regime to the results in this
section and in the preceding ones. In determining the degree of shallowness, it is important to
account for not only the opening angle (a=R), but also the aspect ratio, a=h: For example, in
Figs. 16–20, for a moderately thick shell with a=h ¼ 10; the maximum opening angle
considered is a=R ¼ 1 rad. This translates into h=R ¼ 0:1; which implies 10% error in the
underlying shallowness approximation of Sander’s shell theory of 1þ h=R � 1: It appears that
h=R ¼ 0:1 is the maximum limit of the validity of the extension of Sander’s shell theory to the
moderately thick shell regime employed in this investigation. Similarly, in Figs. 11–15, for
cylindrical panels with an opening angle, a=R ¼ 0:2 rad, the minimum aspect ratio considered is
a=h ¼ 5: This translates into h=R ¼ 0:04; which implies 4% error in the underlying shallowness
approximation of Sander’s shell theory of 1þ h=R � 1; thus testifying to the validity of the
extension of Sander’s shell theory to the moderately thick shell regime employed in these
computations. The same fact is true for cylindrical panels with the SS2 boundary
condition discussed in the preceding section (Figs. 6–10). In regards to the Figs. 2–6 of the
preceding section, cylindrical panels considered have R=a ¼ 5 and a=h ¼ 10 implying h=R ¼ 0:02;
which can be ignored in comparison to 1 (2% error), thus being within the purview of Sander’s
shell theory.
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4.4. Example 4—cross-ply spherical panels with C4 boundary conditions

In this case, like their cylindrical counterparts discussed above, the results computed using the
present theory on variations of the lowest two numerically ordered normalized frequencies of
Fig. 21. Variation of normalized fundamental natural frequency of square relatively deep (R=a ¼ 5) antisymmetric

(901/01) (—) and symmetric (901/01/901) (- - -) cross-ply spherical panels (with SS2 boundary condition) with a=h ratio.

Fig. 22. Variation of normalized second natural frequency of square relatively deep (R=a ¼ 5) antisymmetric (901/01)

(—) and symmetric (901/01/901) (- - -) cross-ply spherical panels (with SS2 boundary condition) with a=h ratio.
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symmetric (01/901/01) and antisymmetric (01/901) cross-ply spherical panels with respect to a=h

and R=a are numerically too close to their counterparts, shown in Figs. 12 and 14, respectively, of
Kabir and Chaudhuri [16] to merit a separate presentation. The physical interpretations of these
results are available there, and will not be repeated here in the interest of brevity.
Fig. 23. Variation of normalized fundamental natural frequency of square moderately thick (a=h ¼ 10) antisymmetric

(901/01) (—) and symmetric (901/01/901) (- - -) cross-ply spherical panels (with SS2 boundary condition) with R=a ratio.

Fig. 24. Variation of normalized second natural frequency of square moderately thick (a=h ¼ 10) antisymmetric (901/

01) (—) and symmetric (901/01/901) (- - -) cross-ply spherical panels (with SS2 boundary condition) with R=a ratio.
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4.5. Example 5—cross-ply spherical panels with SS2 boundary conditions

Figs. 21–24 present hitherto unavailable (in the literature) results pertaining to the first two
numerically ordered normalized frequencies of symmetric (901/01/901) and antisymmetric (901/01)
cross-ply spherical panels with the SS2 boundary condition.
Variation of the lowest two (actually, three modes for 901/01 panels) numerically ordered

natural frequencies of relatively deep (R=a ¼ 5) antisymmetric (901/01) and symmetric (901/01/
901) cross-ply spherical panels with respect to the length-to-thickness ratio, a=h; is shown in Figs.
21 and 22. It is interesting to observe from Fig. 21 that the fundamental frequency of the
antisymmetric (901/01) cross-ply spherical panel is lower than its symmetric (901/01/901)
counterpart except in the very thick shell regime (a=hp5). This is due to the softening effect of
the bending–stretching type coupling in the former lamination. This conclusion is in line with
what has been observed in the case of previously discussed cases. Additionally, unlike cylindrical
cross-ply panels, difference in curvatures is absent here. The second numerically ordered
frequency (Fig. 22), however, shows a somewhat different trend in that the normalized frequency
of the antisymmetric (901/01) cross-ply spherical panel assumes a value higher than its symmetric
(901/01/901) counterpart for a=hp23 (approx.). This is due to the fact that the (901/01/901) cross-
ply panels have lower volume-percentages of fibers in the direction of the smaller wavelength,
which renders them more flexible and more prone to the effect of rotatory inertia, in the thicker
shell regime, compared to their antisymmetric counterparts.
Influence of the shell curvature on the lowest two natural frequencies of moderately thick

(a=h ¼ 10) antisymmetric (901/01) and symmetric (901/01/901) cross-ply spherical panels is shown
in Figs. 23 and 24. The effects of lamination and shell curvature on the computed natural
frequencies are quite self-evident in these plots. The plots of ō1 and ō2 versus R=a (Figs. 23, 24)
demonstrate that for both three-layer symmetric and two-layer antisymmetric cross-ply panels,
the effect of shell curvature on the normalized frequencies is not significant beyond R=a ¼ 20
(approximately). Additionally, it is interesting to observe that the normalized fundamental
frequency of a symmetric cross-ply panel is slightly higher than its antisymmetric counterpart in
the entire range of R=a investigated. Furthermore, the normalized fundamental frequencies, which
correspond to the u3ð1; 1Þ mode shape, of both sets of panels are substantially higher in the
relatively deep shell regime (R=ap5) as compared to their moderately deep (e.g., R=a 	 10) shell
counterparts. In contrast, the second lowest frequency of an antisymmetric cross-ply panel, which
corresponds to the u3ð1; 2Þ and u3ð2; 1Þ mode shapes, monotonically increases with the radius of
curvature, R=a: The second lowest frequency of a symmetric cross-ply panel, which corresponds
to the u3ð1; 2Þmode shape, monotonically decreases with the radius of curvature, R=a; in a manner
similar to its fundamental frequency counterpart. It appears that the membrane effect due to the
shell curvature, possibly coupled with the surface-parallel inertia, has a stronger effect on the
normalized fundamental frequency, compared to the second.
In Figs. 21 and 22, for spherical panels with an opening angle, a=R ¼ 0:2 rad, the minimum

aspect ratio considered is a=h ¼ 5: This translates into h=R ¼ 0:04; which implies 4% error in the
underlying shallowness approximation of Sander’s shell theory of 1þ h=R � 1; thus testifying to
the validity of the extension of Sander’s shell theory to the moderately thick shell regime employed
in these computations. In regards to the Figs. 23 and 24, for moderately thick spherical panels
(a=h ¼ 10), the maximum opening angle considered is a=R ¼ 0:2 rad. This translates into h=R ¼
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0:02; which implies 2% error in the underlying shallowness approximation of Sander’s shell theory
of 1þ h=R � 1:
5. Summary and conclusions

An analytical solution to the problem of symmetric and antisymmetric cross-ply doubly curved
panels subjected to the general admissible boundary condition is presented. Each unknown is
expressed in terms of two double Fourier series in which the second set is orthogonal to the first,
and represents the error term that may arise out of the presence of discontinuity in the function or
it first derivative at the boundary. Although the solution procedure has been illustrated only for
three specific boundary conditions, the main idea behind it is general enough to be applicable to
any laminated shell problem subjected to any set of admissible (including free) boundary
conditions.
The computed natural frequencies (eigenvalues) provide important insight into the dynamic

response of the three-layer symmetric and two-layer antisymmetric cross-ply cylindrical and
spherical panels under investigation. These results shed light on the highly complex interaction
among the effects of transverse shear deformation, bending–stretching type coupling, membrane
action due to shell curvature, surface-parallel end constraints (or lack thereof), rotatory inertias,
surface-parallel inertias, and so on. This is especially true in the case of antisymmetric cross-ply
panels with SS1 boundary conditions, which, unlike their SS2 and C4 counterparts, have
manifested unforeseen complexities in the numerical results. The antisymmetric cross-ply panels
suffer from the effect of bending–stretching type coupling, which introduces a softening effect
akin to that of ‘‘beam-column’’ in the beam function. Since the SS1 boundary condition
completely relaxes any surface-parallel constraint, this type of coupling plays the role of a
softening agent and lowers the normalized natural frequencies of the antisymmetric cross-ply
panels with the SS1 boundary condition over their symmetric counterparts in the thinner deep
panel regimes. Other interesting results include the similarities and differences in the dynamic
responses of cylindrical and spherical panels. The extensive numerical results presented herein can
be utilized as bench-mark solutions for future comparisons with approximate or weak (integral)
form of solutions, such as finite elements, boundary elements and meshless Petrov–Galerkin
methods (in the context of FSDT).
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Appendix A. Kinematic relations of a three-dimensional curved elastic solid

Let us assume that orthogonal curvilinear axes x1 and x2 are placed at midsurface of the shell
(x3=0) and the x3 -coordinate is a straight line normal to the midsurface (Fig. 1). a and b
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represent the curved span lengths of the two sides of the panel parallel to the x1 and x2 axes,
respectively, while R1 and R2 denote the principal radii of curvature of the midsurface of the shell.
Strain–displacement relations from the linear (small deformation) theory of elasticity in
curvilinear coordinates are given as follows [33]

�1 x1; x2; x3ð Þ ¼
1

1þ x3=R1

� �
g1

ū1;1 þ
1

g2
g1;2ū2 þ

g1
R1

ū3

� �
; (A.1a)

�3 x1; x2; x3ð Þ ¼ ū3;3; (A.1b)

�4 x1; x2; x3ð Þ ¼
1

1þ x3=R1

� �
g1

ū3;1 �
g1
R1

ū1

� �
þ ū1;3; (A.1c)

�6 x1; x2; x3ð Þ ¼
1

1þ x3=R1

� �
g1

ū2;1 �
1

g2
g1;2ū1

� �
þ

1

1þ x3=R2

� �
g2

ū1;2 �
1

g1
g2;1ū2

� �
; (A.1d)

where ūi (i=1, 2, 3) and �i (i=1, ...,6) represent the physical components of the displacement
vector and strain tensor, respectively, at a point (x1, x2, x3) on a parallel surface, while g1 and g2
are the first fundamental quantities of the shell reference surface for lines of curvature
coordinates. �2 and �5 can be obtained from �1 and �4; respectively, by replacing in Eq. (A1a, c)
subscripts 1 by 2 and vice versa. Assumptions of moderate shallowness z3/R151 and first-order
shear deformation theory yield the kinematic relations, given by Eqs. (2) and (3).
It may be remarked here that despite this assumption of moderate shallowness, the extension of

Sander’s shell theory to the moderately thick shell regime can approximately capture some aspects
of a relatively deep shell better than its counterpart due to Donnell, which is valid only for a very
shallow shell. However, it cannot completely capture the exact deformation behavior of a very
deep shell, for which the extension of Flugge’s shell theory to the moderately thick shell regime
must be employed. The latter may make the present laminated shell boundary-value problem
more difficult (but not impossible) to solve analytically. Therefore, the extension of Sander’s shell
theory to the moderately thick shell regime serves as a practical compromise between the demand
of accuracy and ease of mathematical analysis in the relatively deep shell regime.
Appendix B. Definition of certain shell geometry/material constants

The non-zero constants Gði; jÞ; i ¼ 1; 5 and j=1,2, ..., referred to in Eq. (8) are as given below:

Gð1; 1Þ ¼ �
A55

R2
1

; Gð1; 2Þ ¼ A11; Gð1; 3Þ ¼ A66 þ 2cB66 þ c2D66;

Gð1; 4Þ ¼ A12 þ A66 � c2D66; Gð1; 5Þ ¼
A11

R1
þ

A12

R2
þ

A55

R1
; Gð1; 6Þ ¼

A55

R1
;

Gð1; 7Þ ¼ B11; Gð1; 8Þ ¼ B66 þ cD66; Gð1; 9Þ ¼ B12 þ B66 þ cD66; ðB:1aÞ
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Gð2; 1Þ ¼ Gð1; 4Þ; Gð2; 2Þ ¼ �
A44

R2
2

; Gð2; 3Þ ¼ A66 � 2cB66 þ c2D66;

Gð2; 4Þ ¼ A22; Gð2; 5Þ ¼
A12

R1
þ

A22

R2
þ

A44

R2
; Gð2; 6Þ ¼ B12 þ B66 � cD66;

Gð2; 7Þ ¼
A44

R2
; Gð2; 8Þ ¼ B66 � cD66; Gð2; 9Þ ¼ B22; ðB:1bÞ

Gð3; 1Þ ¼ �Gð1; 5Þ; Gð3; 2Þ ¼ �Gð2; 5Þ; Gð3; 3Þ ¼ �
A11

R2
1

þ
2A12

R1R2
þ

A22

R2
2

� �
;

Gð3; 4Þ ¼ A55; Gð3; 5Þ ¼ A44; Gð3; 6Þ ¼ A55 �
B11

R1
�

B12

R2
;

Gð3; 7Þ ¼ A44 �
B12

R1
�

B22

R2
; ðB:1cÞ

Gð4; 1Þ ¼ Gð1; 6Þ; Gð4; 2Þ ¼ B11; Gð4; 3Þ ¼ B66 þ cD66;

Gð4; 4Þ ¼ Gð2; 6Þ; Gð4; 5Þ ¼ �Gð3; 6Þ; Gð4; 6Þ ¼ �A55;

Gð4; 7Þ ¼ D11; Gð4; 8Þ ¼ D66; Gð4; 9Þ ¼ D12 þ D66; ðB:1dÞ

Gð5; 1Þ ¼ B66 þ B12 þ cD66; Gð5; 2Þ ¼
A44

R2
; Gð5; 3Þ ¼ Gð2; 8Þ;

Gð5; 4Þ ¼ B22; Gð5; 5Þ ¼ �Gð3; 7Þ; Gð5; 6Þ ¼ Gð4; 9Þ;

Gð5; 7Þ ¼ �A44; Gð5; 8Þ ¼ D66; Gð5; 9Þ ¼ D22: ðB:1eÞ
Appendix C. Boundary fourier coefficients for SS1 boundary condition

Definition of boundary Fourier coefficients arising out of discontinuities at the edges for
geometric and natural boundary conditions is given below:
SSI:

am; bmð Þ ¼
4

ab

Z a

0


uI1 x1; bð Þ � uI1 x1; 0ð Þ
	 


cosðamx1Þ dx1; (C.1a,b)

cn; dnð Þ ¼
4

ab

Z b

0


uI2 a;x2ð Þ � uI2 0;x2ð Þ
	 


cosðbnx2Þ dx2; (C.1c,d)

en; f n

� �
¼

4

ab

Z b

0


fI
1;1 a;x2ð Þ � fI

1;1 0;x2ð Þ

h i
sinðbnx2Þ dx2; (C.1e,f)

gm; hm

� �
¼

4

ab

Z a

0


fI
2;2 x1; bð Þ � fI

2;2 x1; 0ð Þ

h i
sinðamx1Þ dx1; (C.1g,h)
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ān; b̄n

� �
¼

4

ab

Z b

0


uII1 a;x2ð Þ � uII1 0;x2ð Þ
	 


cosðbnx2Þ dx2; (C.2a,b)

c̄m; d̄m

� �
¼

4

ab

Z a

0


uII2 x1; bð Þ � uII2 x1; 0ð Þ
	 


cosðamx1Þ dx1; (C.2c,d)

ēn; f̄ n

� �
¼

4

ab

Z b

0


fII
1;1 a;x2ð Þ � fII

1;1 0;x2ð Þ

h i
sinðbnx2Þ dx2; (C.2e,f)

ḡm; h̄m

� �
¼

4

ab

Z a

0


fII
2;2 x1; bð Þ � fII

2;2 x1; 0ð Þ

h i
sinðamx1Þ dx1; (C.2g,h)

īn; j̄n

� �
¼

4

ab

Z b

0


uII3;1 a;x2ð Þ � uII3;1 0; x2ð Þ

h i
cosðbnx2Þ dx2; (C.2i,j)

k̄m; l̄m

� �
¼

4

ab

Z a

0


uII3;2 x1; bð Þ � uII3;2 x1; 0ð Þ

h i
cosðamx1Þ dx1: (C.2k,l)
Appendix D. C4 boundary condition

As in the case of the SS1 boundary condition, fI
2 and fI

1 satisfy the geometric
boundary conditions at the edges, x1 ¼ 0; a; and x2 ¼ 0; b; respectively. Furthermore,
examination of u1(x1, x2) reveals that uI1 and uII1 satisfy the geometric boundary conditions at
the edges x1 ¼ 0; a; and x2 ¼ 0; b; respectively. Therefore, while uI1;1 and uII1;2 can be obtained by
termwise differentiation, uI1;11 and uII1;22 need to introduce boundary discontinuities as shown
below:

uI1 x1;x2ð Þ ¼
X1
m¼0

X1
n¼1

U I
mn cos amx1ð Þ sin bnx2

� �
; 0px1pa; 0px2pb; (D.1a)

uI1;11 x1;x2ð Þ ¼
1

2

X1
n¼1

in sin bnx2

� �
þ

X1
m¼1

X1
n¼1

�a2mU I
mn þ gmin þ dmjn

	 

cos amx1ð Þ sin bnx2

� �
; (D.1b)

uII1 x1; x2ð Þ ¼
X1
m¼1

X1
n¼0

U II
mn sin amx1ð Þ cos bnx2

� �
; 0px1pa; 0px2pb; (D.2a)

uII1;22 x1; x2ð Þ ¼
1

2

X1
m¼1

m̄m sin amx1ð Þ þ
X1
m¼1

X1
n¼1

�b2nU II
mn þ gnm̄m þ dnn̄m

	 

sin amx1ð Þ cos bnx2

� �
;

(D.2b)
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in which in; jn; m̄m and n̄m are defined as follows:

in; jn

� �
¼

4

ab

Z b

0


uI1;1 a;x2ð Þ � uI1;1 0; x2ð Þ

h i
sin bnx2

� �
dx2; (D.3a)

m̄m; n̄mð Þ ¼
4

ab

Z a

0


uII1;2 x1; bð Þ � uII1;2 x1; 0ð Þ

h i
sin amx1ð Þ dx1: (D.3b)

Additionally, it can be easily seen that uI2 and fI
2 satisfy the geometric boundary conditions at the

edges x2 ¼ 0; b; while uII2 and fI
1 do the same at the edges x1 ¼ 0; a: The differentiation step finally

introduces 10m þ 10n þ 4 boundary Fourier coefficients in addition to those introduced by the
assumed solution functions, given by Eqs. (12,13). As before, substitution of the assumed solution
functions and their appropriate partial derivatives into Eqs. (9) and equating the coefficients of
the trigonometric functions of the resulting equations contribute 10mn þ 5m þ 5n þ 1 linear
algebraic equations, while the remaining 10m þ 10n þ 4 equations are supplied by the geometric
boundary conditions.
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